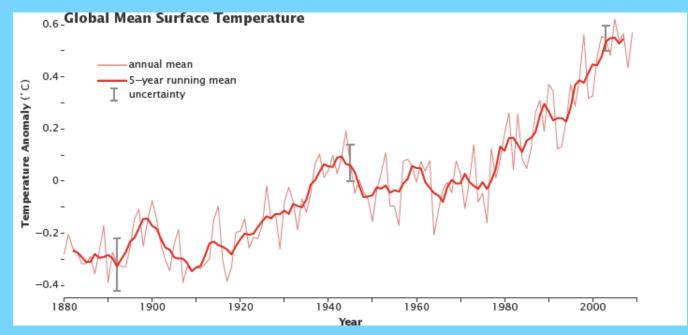
Alaskan Farms on the Table

Alaska FFA Association and the USDA Northwest Climate Hub

Sun Circle Farm, Palmer Alaska—NRCS



1

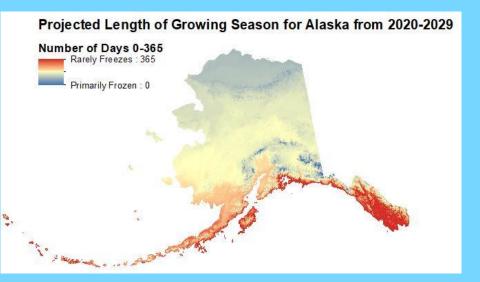
Global Warming vs Climate Change

Global Warming: increase in Earth's average temperature.



Climate Change: long term-change in Earth's climate or the climate of a region

Warming AND changes besides temperature


Climate Change & Alaska

- Changing faster in Alaska than anywhere else in the United States
- Increasing temperatures will lead to
 - sea ice loss, coastal erosion, and permafrost thaw
 - increased risk of wildfire
- Extreme precipitation and drought likely to increase

Climate Change & Alaskan Agriculture

- Longer growing season—increase diversity of crops and meet local demand for Alaska-grown produce
- Crop yields may improve or degrade—shifting growing season could affect growth
- Increased pressure from weeds and invasive plants
- Pests and diseases may increase due to warmer conditions

Alaskan Farms on the Table Game

- You are a farmer
- Goal: stay in the black
- Circle <u>one</u> of the regions in Table 1

NRCS Alaska

Table 1. Farm locations and data: 2021 values are averages, and 2070 values are predicted changes

Circle one region:		MAT-SU VALLEY	WESTERN KENAI	COPPER RIVER	FAIRBANKS	NENANA
TEMPERATURE	2021 (°F) 2070 (°F)	28.9	33.6	26.5	27.3	25.5
		+8	+8	+8	+10	+10
PRECIPITATION	2021(in.) 2070 (in.)	33.55	56.3	73.56	17.54	17.5
		+10%	+10%	+10%	+15%	+15%
AVERAGE FARM SIZE IN ALASKA		98 Acres	121 Acres	98 Acres	372 Acres	372 Acres
COMMON CROPS		hay, potatoes, carrots, beets, cabbage, broccoli, melons	hay, onions, carrots, potatoes	hay, potatoes, carrots, cabbage	barley, hay, potatoes, carrots	hay, potatoes, carrots

Weather data source: https://www.ncdc.noaa.gov/cag

Crop data source: https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/County_Profiles/ Alaska/index.php

Bushes Bunches Produce Stand

No-till Planting

A type of planting where the seeds are inserted directly into the soil, instead of turning the soil over before inserting the seeds

- Pros:
 - Lower labor, equipment, and fuel costs
 - Reduces water runoff from precipitation and irrigation
 - Limits wind erosion and compaction, and increases organic material
- Cons:
 - High upfront equipment costs
 - May require more herbicide and fungicide

A no-till planter in Alaska. Credit: NRCS.

Hedgerows & Windbreaks

A row of wild or planted shrubs and trees bordering a road or field

- Pros:
 - Helps prevent some wind and water erosion of the soil
 - Can help prevent the spread of insect and fungal diseases
 - Can create pollinator habitat
- Cons:
 - Fewer rows for crops
 - Needs watering and maintenance

A windbreak in North Dakota—NRCS

Water Collection and Storage Unit

Collects rainfall from roofs or runoff from fields to be used for irrigation

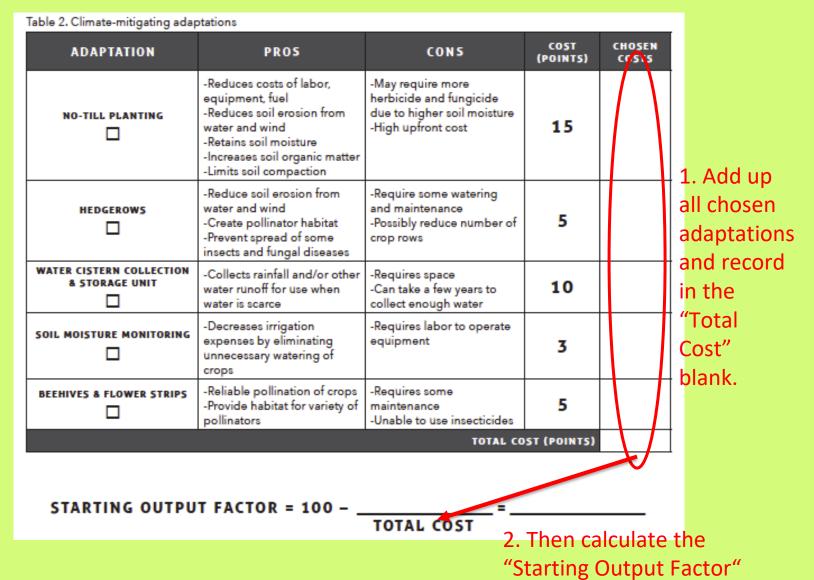
- Pros:
 - Water source available during droughts

- Cons:
 - Can take a few years to gather enough water to help mitigate effects
 - Requires space

Water cisterns on Sun Circle Farm, Palmer, AK—NRCS

Soil Moisture Monitoring

- Pros:
 - Helps farmers know the best time to irrigate crops, saving on water cost
 - Inexpensive equipment
- Cons:
 - Biggest expense is labor


Beehives and Flower Strips

• Pros:

- Reliable pollination of crops
- Can provide habitat for native pollinators other than bees
- Cons:
 - Cannot use insecticides due on harm inflicted to colonies

Customize your farm!

Practices and Treatments – Year 1

- Choose at least two of the nine options
- Success will be dependent on weather
- Will play for 6 years (rounds)

Crop Seed Varieties

- Drought resistant variety pros:
 - Can produce a more reliable yield/acre during periods of prolonged drought

• Cons:

 Seeds need to be repurchased every year

- Flood resistant variety pros:
 - Can tolerate being submerged for longer periods of time or multiple times/year

Interplanting

Planting a crop together with another in alternating rows

- Pros:
 - Decreased need for crop treatments
 - Less economic risk in case of a crop fail year

- Cons:
 - Requires more planning

Interplanting on Sun Circle Farm in Palmer, AK—NRCS

Crop Rotation

A system of varying crops in the same field year after year

• Pros:

- Cons:
- Avoid depleting the soil of nutrients
- Helps control weeds,
 disease, and other pests

Requires more planning

Credit: NRCS

Spread Spacing

Increasing the amount of space between planted rows of crops

- Pros:
 - Can reduce the need for crop treatments
 - Less competition for resources by plants

- Cons:
 - Lower crop yield per acre

Fertilizing

The process of making the soil more fertile or productive by adding nutrients or organic matter to the soil

• Pros:

- Cons:
- Can make crops grow larger, faster
- Depletes natural soil fertility causing an annual reliance

Credit: Bureau of Labor Statistics

Herbicide

Spraying a substance that targets unwanted vegetation

- Pros:
 - Can greatly reduce loss from plant pests
 - Cons:
 - Becomes less effective with continual use

Pigweed Amaranthus spp.

Credit: University of Delaware

Insecticide

Spraying a substance that targets insect pests

- Pros:
 - Can greatly reduce loss from insect pests

- Cons:
 - Will harm natural pollinators
 - Should not choose if you have beehives and flower strips
 - Becomes less effective with continual use

Credit: USDA

Fungicide

Spraying a substance that targets unwanted fungal pathogens

• Pros:

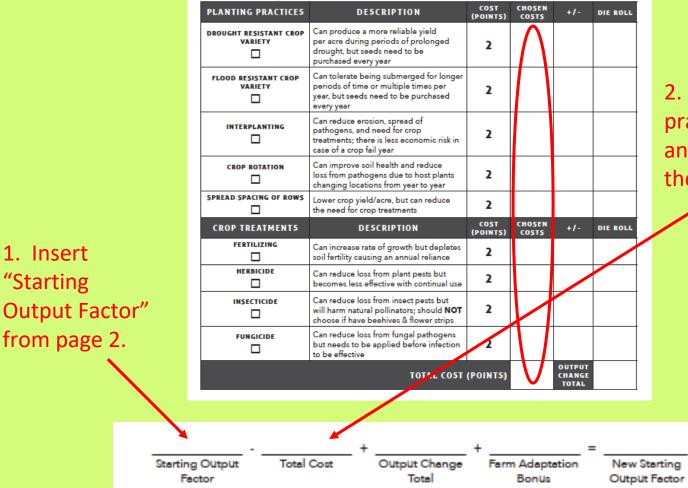
• Cons:

 Can greatly reduces loss from fungal pathogens Needs to be applied before infection to be effective

Credit: USDA

YEAR 1 PRACTICES AND TREATMENTS

Starting Output Factor (from Page 2):


YEAR 1

1. Insert

"Starting

from page 2.

Choose at least two practices and/or treatments.

2. Add up the cost of the practices and treatments and insert the total into the appropriate blank.

YEAR 1: Roll the Die

YEAR 1

Starting Output Factor (from Page 2): _____

Choose at least two practices and/or treatments.

PLANTING PRACTICES	IG PRACTICES DESCRIPTION		CHOSEN COSTS	+/-	DITNOLL
DROUGHT RESISTANT CROP VARIETY	Can produce a more reliable yield per acre during periods of prolonged drought, but seeds need to be purchased every year	2			
FLOOD RESISTANT CROP VARIETY	Can tolerate being submerged for longer periods of time or multiple times per year, but seeds need to be purchased every year	2			
INTERPLANTING	Can reduce erosion, spread of pathogens, and need for crop treatments; there is less economic risk in case of a crop fail year	2			
CROP ROTATION	Can improve soil health and reduce loss from pathogens due to host plants changing locations from year to year	2			
SPREAD SPACING OF ROWS	Lower crop yield/acre, but can reduce the need for crop treatments	2			
CROP TREATMENTS	DESCRIPTION	COST (POINTS)	CHOSEN COSTS	+/-	DIE ROLL
	Can increase rate of growth but depletes soil fertility causing an annual reliance	2			
	Can reduce loss from plant pests but becomes less effective with continual use	2			
	Can reduce loss from insect pests but will harm natural pollinators; should NOT choose if have beehives & flower strips	2			
FUNGICIDE	Can reduce loss from fungal pathogens but needs to be applied before infection to be effective	2			\bigcup
	TOTAL COST	(POINTS)		OUTPUT Change Total	

Year 1 Weather – Historically Normal

- Positive investments ("+")
 - \circ Interplanting
 - Crop rotation
 - Spread spacing of rows
 - \circ Fertilizing
 - \circ Herbicide
 - Insecticide
 - Fungicide

- Negative investments ("-")
 - Drought resistant crop varieties
 - Flood resistant crop varieties

- Add 3 points for each of the following farm adaptations implemented:
- No-till planting
- Hedgerows
- Water collection and storage
- Soil moisture monitoring
- Beehives and flower strips

Year 1 Handout

Starting Output Factor (from Page 2): ____

YEAR 1

Choose at least two practices and/or treatments.

	Choose at least two practices	s and/or treatments.					
	PLANTING PRACTICES	DESCRIPTION	COST (POINTS)	CHOSEN COSTS	+/-	DIE ROLL	
	DROUGHT RESISTANT CROP VARIETY	Can produce a more reliable yield per acre during periods of prolonged drought, but seeds need to be purchased every year	2			$\left \right\rangle$	
	FLOOD RESISTANT CROP VARIETY	Can tolerate being submerged for longer periods of time or multiple times per year, but seeds need to be purchased every year	2				
		Can reduce erosion, spread of pathogens, and need for crop treatments; there is less economic risk in case of a crop fail year	2				
	CROP ROTATION	Can improve soil health and reduce loss from pathogens due to host plants changing locations from year to year	2				
	SPREAD SPACING OF ROWS	Lower crop yield/acre, but can reduce the need for crop treatments	2				
	CROP TREATMENTS	DESCRIPTION	COST (POINTS)	CHOSEN COSTS	+/-	DIT ROLL	
		Can increase rate of growth but depletes soil fertility causing an annual reliance	2				
		Can reduce loss from plant pests but becomes less effective with continual use	2				
		Can reduce loss from insect pests but will harm natural pollinators; should NOT choose if have beehives & flower strips	2				
	FUNGICIDE	Can reduce loss from fungal pathogens but needs to be applied before infection to be effective	2				
		TOTAL COST	(POIN7S)		OUTPUT CHANGE TOTAL	V	
ert total adaptat	on						
(bottom of				→	-		
s slide). Starting C	Output Total Co	ost Output Change	Farm	Adaptati		New St	tertin
Factor	Total		Bonús		Output		

3. Add up the positive and negative investments and insert the total into the appropriate blank.

5. Add up all of the blanks to calculate the "Starting Output Factor" for the next year (be sure to pay attention to the sign).

6. Repeat for each year.

ng tor

Practices and Treatments – YR 2

- Choose at least two of the nine options
- Success will be dependent on weather

Year 2 Weather - Drought

- Positive investments ("+")
 - Drought resistant crop varieties
 - Interplanting
 - Crop rotation
 - o Fertilizer
 - o Insecticide

- Negative investments ("-")
 - Flood resistant crop varieties
 - Spread spacing
 - Herbicide
 - Fungicide

Add 3 points for each of the following farm adaptations implemented:

- No-till planting
- Water collection and storage
- Soil moisture monitoring
- Beehives and flower strips

Practices and Treatments – YR 3

- Choose at least two of the nine options
- Success will be dependent on weather

Credit: NRCS & BLS

Year 3 Weather – Heat Wave

- Positive investments ("+")
 - Interplanting
 - Crop rotation
 - Spread spacing of rows
 - o Insecticide

- Negative investments ("-")
 - Drought resistant crop varieties
 - Flood resistant crop varieties
 - \circ Fertilizer
 - Herbicide
 - Fungicide

Add 3 points for each of the following farm adaptations implemented:

- No-till planting
- Water collection and storage
- Soil moisture monitoring

Year 3 – Subsidy Announcement

Beehives

- Pollination from bees in the US is worth over \$14 billion
- Many crops would not exist, or be less productive without bees

*Add *10 points* in the Subsidy Bonus blank if you have invested in beehives*

Important crops pollinated by bees

- Peppers red, green, bell, chili
- Watermelon
- Cucumber
- Pumpkin
- Strawberry
- Cotton
- Apple
- Alfalfa
- Cherry
- Peach
- Pear
- Raspberry/Blackberry
- Blueberry
- And many, many more

Practices and Treatments – YR 4

- Choose at least two of the nine options
- Success will be dependent on weather

Credit: NRCS & BLS

Year 4 Weather - Wind

- Positive investments ("+")
 - Interplanting
 - Crop rotation
 - Spread spacing of rows

- Negative investments ("-")
 - Drought resistant crop varieties
 - Flood resistant crop varieties
 - \circ Fertilizer
 - \circ Herbicide
 - Insecticide
 - Fungicide

Add 3 points for each of the following farm adaptations implemented:

- No-till planting
- Hedgerows

Practices and Treatments – YR 5

- Choose at least two of the nine options
- Success will be dependent on weather

Credit: NRCS & BLS

Year 5 Weather – Increased Precipitation

- Positive investments ("+")
 - Flood resistant crop varieties
 - Interplanting
 - Crop rotation
 - Spread spacing of rows
 - Fungicide

- Negative investments ("-")
 - Drought resistant crop varieties
 - \circ Fertilizer
 - Herbicide
 - o Insecticide

Add 3 points for each of the following farm adaptations implemented:

- No-till planting
- Hedgerows

Practices and Treatments – YR 6

- Choose at least two of the nine options
- Success will be dependent on weather

Credit: NRCS & BLS

Year 6 Weather – Heat Wave

- Positive investments ("+")
 - Interplanting
 - Crop rotation
 - Spread spacing of rows
 - o Insecticide

- Negative investments ("-")
 - Drought resistant crop varieties
 - Flood resistant crop varieties
 - Fertilizer
 - Herbicide
 - \circ Fungicide

Add 3 points for each of the following farm adaptations implemented:

- No-till planting
- Water collection and storage
- Soil moisture monitoring

Year 6 – Subsidy Announcement

Water conservation includes using water resources responsibly (not overwatering) and only watering when necessary.

Extreme droughts are predicted to happen more often as a result of global climate change.

Add 5 points in the subsidy bonus blank if you invested in <u>soil</u> moisture monitoring

Add 10 points in the subsidy bonus blank if you invested in <u>water</u> collection and storage

If you invested in both, add 15 points total