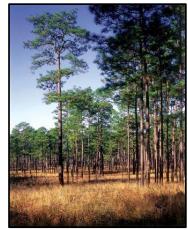

Managing Longleaf Pine Ecosystems in a Changing Climate: An Ecological Silviculture Approach

Steve Jack Boggy Slough Conservation Area T.L.L. Temple Foundation Lufkin, TX



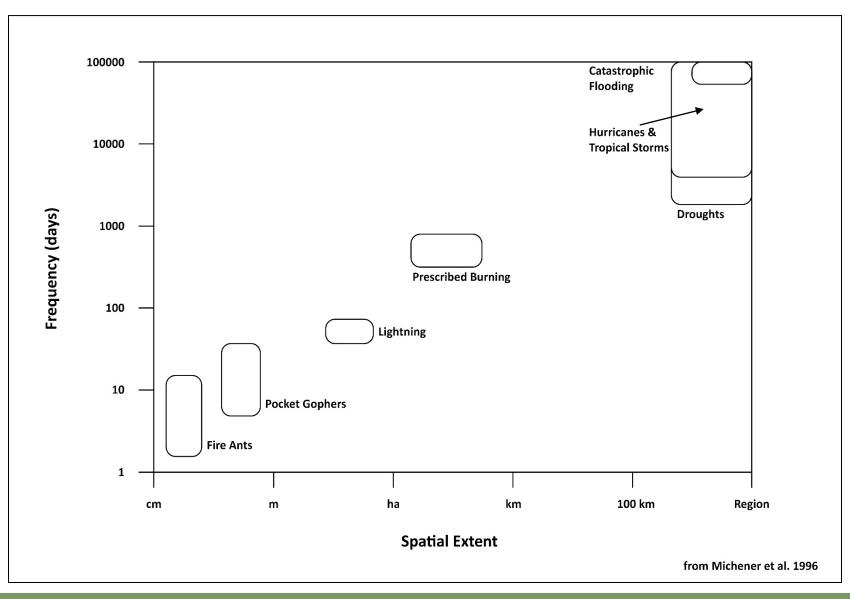
Longleaf Pine Distribution and Community Types

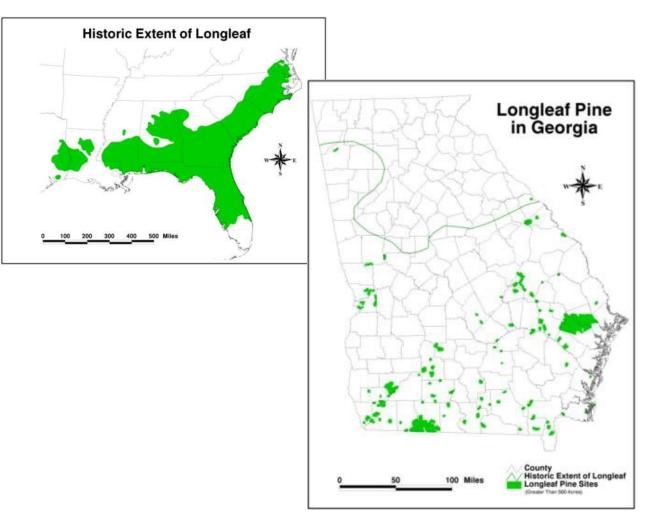
- ~92 million acres presettlement
- < 5% remains, highly fragmented</p>
- Most diverse NA temperate ecosystem
- 900 endemic plants rangewide
- 31 Federally-listed T/E spp.
- Fire <u>dependent</u> ecosystem
- Wide range of site types
- Longest-lived southern pine (400+ yrs.)

Longleaf Pine: Structure & Dynamics

- Disturbance and Competition processes drive dynamics and create structure
- Both influence demography of longleaf pine and associated plant species
- Lead to multi-aged structure
- Wildlife respond to structure
- Water, Wind & Fire: disturbance agents and alter competitive interactions

Natural Overstory Disturbance





Conceptual Longleaf Pine Disturbance Model

Longleaf Pine Ecosystems – Why Restore?

- High biological diversity
- 31 Federally-listed T/E spp., numerous At-Risk spp.
- 900 endemic plants rangewide
- Critical habitat for 60% of all SE US herpetofauna
- < 5% historical extent remains, highly fragmented
- Only ~ 35% of remaining LLP within structural HRV

High Diversity and Conservation Value

Ecosystem Services – water and carbon?

Ground Cover Community

Many ETS & At-Risk Species

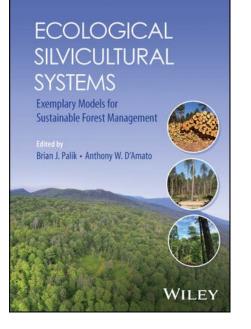
Desired Condition for Diversity & Conservation Objectives

- Open canopy
- Multi-aged
- Heterogeneous
- Diversity
- Old trees
- Dead wood component

How do we get to those conditions?

• Utilize an Ecological Silviculture approach

From Tony D'Amato's earlier presentation, ecological silviculture is:


"Management approach that applies an understanding of the structure, function, and dynamics of natural forest ecosystems to achieve integrated environmental, economic, and social outcomes (Palik et al. 2020)."

• Main elements of this approach

- Continuity
- Complexity/Diversity
- Timing of disturbances or treatments
- Landscape Context

For Longleaf Pine

53

5 Ecological Silviculture for Longleaf Pine Woodlands in the Southeastern U.S.

Steven B. Jack², Benjamin O. Knapp², and R. Kevin McIntyre³ ¹ Bogy Slough Conservation Area, T.L. Temple Foundation, Lufan, TX, USA ² School of Mutual Resource, University of Messauri, Columbia, MD, USA ³ Jacobis Catter of Ichamye, Neurosci, G.U.SA

5.1 Introduction

Longleaf pine (*Pinus palustris Mill.*) ecosystems were historically one of the most extensive forest types in North America, covering approximately 37.2 million hectares, primarily in the Coastal

It depends on the starting point!

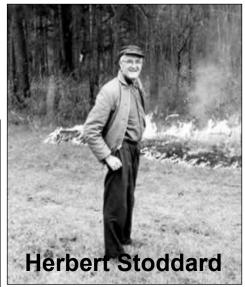
Suggested Sequence of Practices, Different Starting Conditions

STARTING CONDITION	DEVELOPMENT STAGE	DISTURBANCE	FOREST ESTABLISHMENT	YOUNG FOREST	MATURE FOREST	OLD FOREST
MAINTENANCE Existing LLP-dominant canopy		Frequent Rx fire			 Frequent Rx fire Utilize selection harvests Release LLP regeneration & overtopped LLP midstory 	 Maintain frequent Rx fire Selection harvests Remove undesirable tree species Release LLP regeneration & overtopped LLP midstory
	TORATION tion establishment	Complete canopy removal – by harvest or major natural disturbance	Rx fireSite prepPlant LLP	 Maintain Rx fire Intermediate thinning (row thin or variable density) for ground cover and heterogeneous structure 	 Maintain frequent Rx fire Selection harvest to reduce canopy densities and release LLP advance reproduction 	 Maintain frequent Rx fire Selection harvests Remove undesirable tree species Release LLP regeneration & overtopped LLP midstory
Conversion of r	TORATION nature stands of other pecies to LLP	 Reduce canopy density Create/expand canopy gaps Reduce/control midstory Start frequent Rx fire 	 Frequent Rx fire Plant LLP seedlings in gaps or throughout the stand if no LLP canopy trees present 	 Frequent Rx fire Intermediate thinning to remove competition Maintain open-canopy conditions in mature cohorts 	 Frequent Rx fire Selection harvests to lower canopy densities Preferentially retain LLP in the canopy Release LLP regeneration 	 Maintain frequent Rx fire Selection harvests Remove undesirable tree species Release LLP regeneration & overtopped LLP midstory

Modified from Jack, Knapp & McIntyre 2024 in Ecological Silvicultural Systems (Palik and D'Amato, eds.)

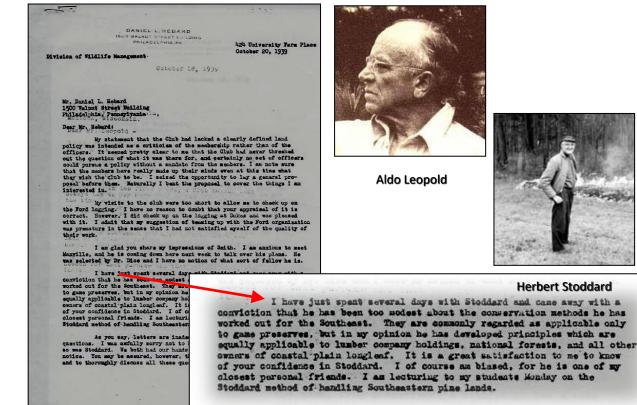
Fire is key in all trajectories

- Fire is <u>required</u> to obtain and maintain the desired structure and composition
- What if fire has not been present for significant time?
 - Slow process to reintroduce fire, multiple low intensity burn treatments
 - Restricted burn conditions to remove accumulated fuels
 - Can have significant mortality if reintroduce fire too quickly
 - More information in Varner et al., 2005 (Restoration Ecology 13(3):536-544) and https://talltimbers.org/articles/how-to-reintroduction-of-flames-in-a-fire-excluded-landscape/



The Stoddard-Neel Approach – A Model for ES in Longleaf Pine

- Developed by Herbert Stoddard in 1930-40's
- Refined and adapted by Leon Neel from 1950's until early 2000's
- Developed through their work on shooting plantations with objectives of aesthetics, wildlife management & hunting, and timber production



The Stoddard-Neel Approach

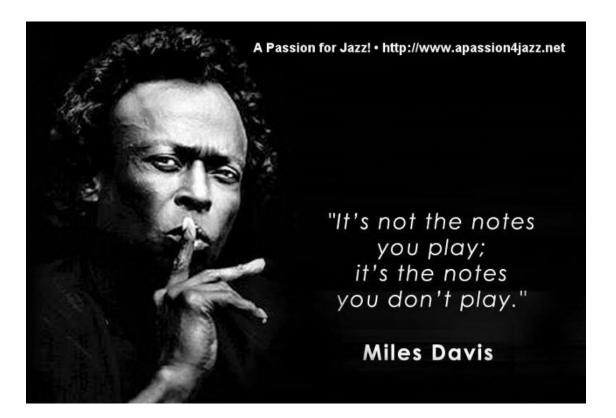
Central Tenets of the S-N Approach

- Leans toward "art" side of silviculture
- Holistic, not timber focused
- Maintain perpetual multi-aged canopy
- Patience, think long-term
- Conservative but utilize resources
- Consider how removals affect other resources
- "Cut the worst" But not all of them

Leopold's Opinion of the S-N Approach

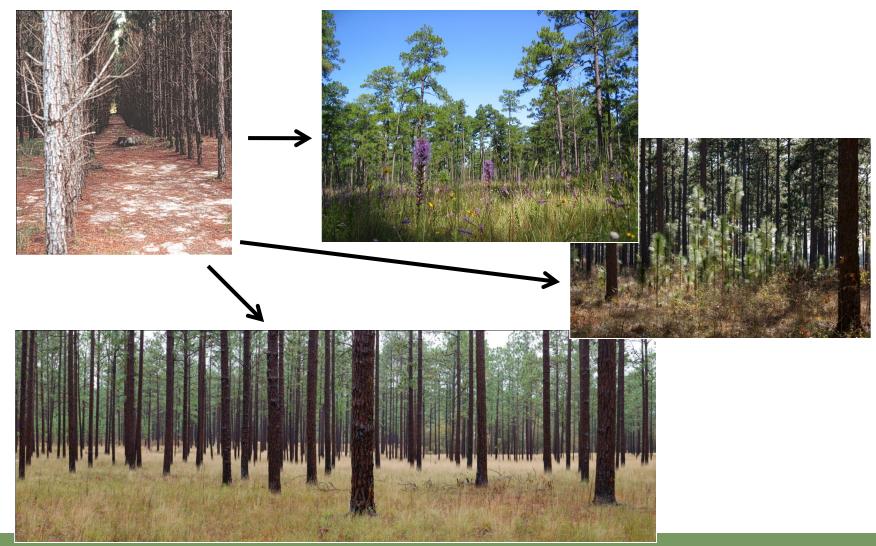
is you say, letters are instamate as a mane of talking over these

Break for Questions


Maintenance - Multi-Aged Stands

- Selections allow for fuel continuity and release regeneration
- Economics compare favorably to even-aged systems (though not as robust)
- Maintain Fire Regime!

Individual Tree Selection for ES – A Jazz Analogy



It's not the trees you mark to be removed; it's the trees you choose to leave behind.

Restoration – Plantation Establishment

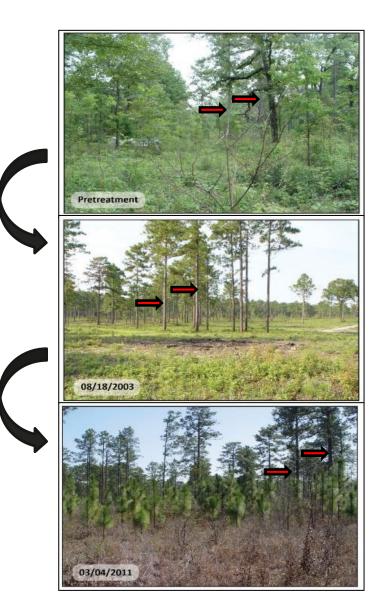
Long-term: Convert Plantations to "Natural" Stands

Restoration Case Study #1

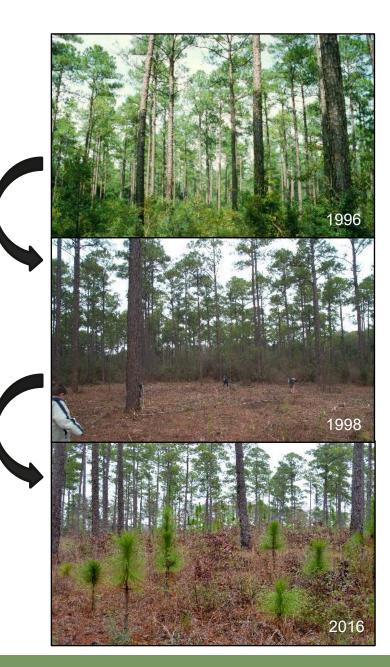
- Planted longleaf pine stand established 1987 in abandoned agricultural field
- Restoration process
 - Plant bareroot LLP seedlings @ 700-900 TPA
 - Age 17: 3rd row thin, leave row selections and direct seed native grasses in takeout rows
 - Age 27 second thin
 - Age 30 tornado treatment 😳
 - Age 31 hurricane treatment 😳

Restoration – Mature Stand Conversion

Underplanting longleaf seedlings in gaps



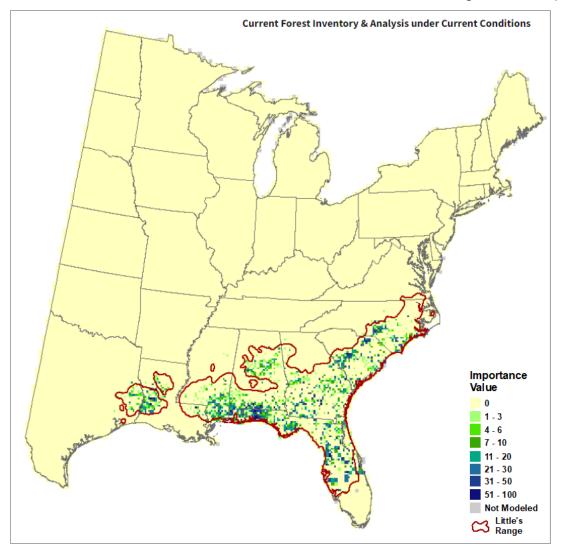
Thinning planted slash pine with gap creation

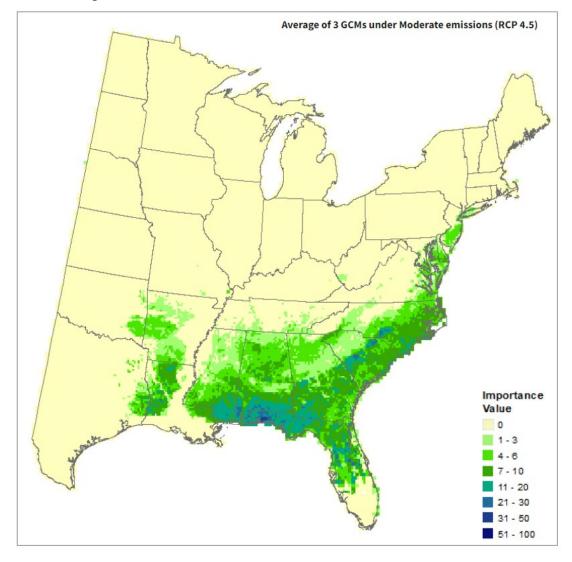

Restoration Case Study #2

- Degraded LLP stand
 - Fire suppression
 - ~ 50% hardwood stocking
 - Poor wildlife habitat
- Restoration process
 - Remove most semi-evergreen hardwoods
 - Herbicide HW resprouts
 - Reintroduce normal Rx fire regime
 - Plant LLP where no canopy
 - Reduced HW and more active fire regime enhances groundcover

Restoration Case Study #3

- Planted slash pine stand
 - Established 1938
 - Infrequent fire
 - Concerns about long-term canopy persistence
- Restoration process
 - Reestablish more intense fire regime
 - Reduce hardwoods
 - Stimulates herbaceous groundcover
 - Thin stand, establish/enlarge gaps
 - Gap treatments (herbicide, mowing)
 - Plant longleaf pine in gaps


What Happens in a Changing Climate?


- Predictions are not disastrous for longleaf pine
 - Drought tolerant
 - Resistant to wind
 - Tolerates fire
 - Range expansion??
- Issues affected by changes in the climate:
 - Available days to burn
 - Response to severe disturbances
 - Wildlife responses (see https://talltimbers.org/articles/arehurricanes-a-growing-threat-to-longleaf-and-other-rarespecies/)

Predicted Response for Longleaf Pine

From Climate change atlas: https://www.fs.usda.gov/nrs/atlas/tree/121

CSIRO PUBLISHING

International Journal of Wildland Fire 2020, 29, 764–778 https://doi.org/10.1071/WF19198

Climate change projected to reduce prescribed burning opportunities in the south-eastern United States

John A. Kupfer ⁽⁾ ^{A,E}, Adam J. Terando ⁽⁾ ^{B,C}, Peng Gao ⁽⁾ ^A, Casey Teske^D and J. Kevin Hiers^D

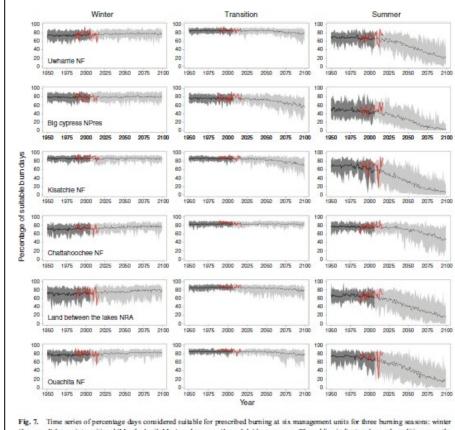
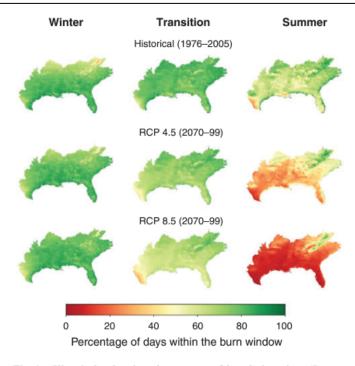



Fig. 7. Tithe series of percentage days considered subtine for presented numming an axy management units for unce numming easies: while (January, February), transitional (March, April, May), and summer (June, July) bum seasons. The red line indicates observed conditions over the period 1987–2017 based on surface meteorological data from the gridMET dataset. Dark and light grey shading represent the range of results from 18 Global Climate Models (GCMs) under a high greenhouse gas emissions scenario (RCP (Representative Concentration Pathway)8.5). The solid (historical) and dashed (future) black lines are the multimodel mean value from all 18 GCMs. Differences in shading distinguish bounds for the CMIP5 historical simulation period (1950–2005: darker) from the future simulation period (2006–99: lighter).

Available Burn Days

Fig. 4. Historical and projected percentage of days during winter (January and February), transitional (March, April, May), and summer (June and July) burn seasons that fall within accepted burn window conditions. Historical baseline period (1976–2005) and future conditions (2070–99) are averages calculated from 18 downscaled Global Climate Models under two future greenhouse gas emissions scenarios, RCP (Representative Concentration Pathway) 4.5 and 8.5.

Hurricane Impacts

Forest Ecology and Management 481 (2021) 118724

Check for updates

	Contents lists available at ScienceDirect				
19.20	Forest Ecology and Management				
E Selle					
ELSEVIER	journal homepage: www.elsevier.com/locate/foreco				

Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape

Brandon T. Rutledge a.*, Jeffery B. Cannon a, R. Kevin McIntyre a, Angela M. Holland b, Steven B. Jack

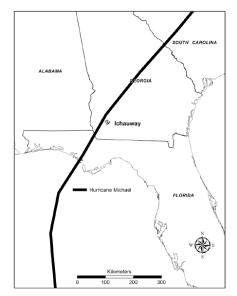


Fig. 1. Storm path of Hurricane Michael that made landfall on October 10, 2018 and the location of Ichauway, Baker County, Georgia USA.

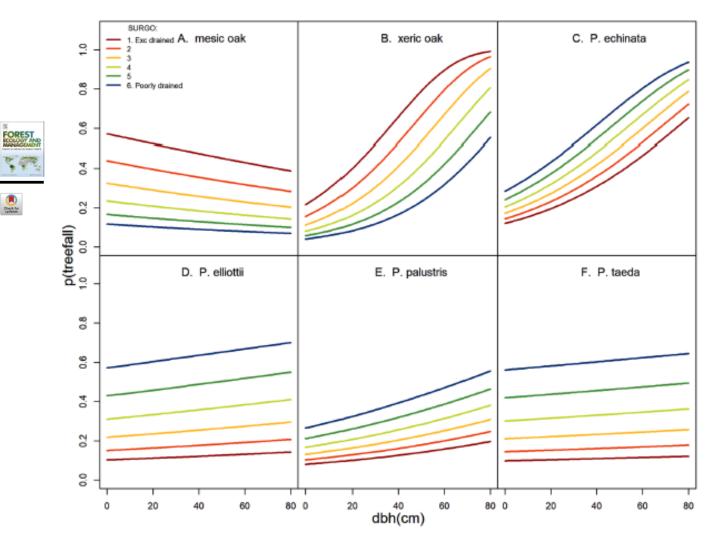
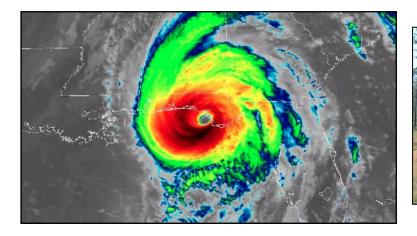



Fig. 4. Model prediction indicating the relationship between tree size (DBH) and estimated probability of treefall across six soil types for four pine species and two Quarcus species groups. Soil types include excessively drained (drainage class 1) to very poorly-drained (drainage class 6). To simplify interpretation, model predictions were run using site-level averages for non-significant parameters (Table 3) and a random plot intercept of 0.

Adversity – A Test of How Well ES is "Working"

October 2018 – Hurricane Michael comes to call

Damaged, Not Destroyed

Partially Restored Area

SUMMARY

- Good examples for ecological silviculture exist for longleaf pine
- Longleaf pine appears to be well-adapted for predicted changes in climate
- Ecological silviculture approaches for longleaf pine provide resilience for severe disturbance events that are likely to become more common

Contact Information

Steve Jack

stevejack@tlltemple.foundation

936-634-3900

T.L.L. Temple Foundation

